APPENDIX A
“SOURCE CODE – BACKEND FUNCTIONS”

// app/api/chat/route.ts
import { NextRequest, NextResponse } from 'next/server'

export async function POST(req: NextRequest) {
 try {
 const body = await req.json()

 if (!process.env.N8N_WEBHOOK_URL) {
 return NextResponse.json(
 { error: 'Missing N8N_WEBHOOK_URL' },
 { status: 500 }
)
 }

 const res = await fetch(process.env.N8N_WEBHOOK_URL, {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 ...(process.env.N8N_API_KEY ? { 'N8N_API_KEY': process.env.N8N_API_KEY } : {}),
 },
 body: JSON.stringify({
 sessionId: body.sessionId,
 messages: body.messages,
 }),
 })

 if (!res.ok) {
 const text = await res.text()
 return NextResponse.json(
 { error: "Sorry, I couldn't process that right now. Please try again.", details: text },
 { status: 502 }
)
 }

 const data = await res.json()
 return NextResponse.json(data)
 } catch (err: unknown) {
 const message = err instanceof Error ? err.message : 'unknown error'
 return NextResponse.json(
 { error: 'Unexpected error', details: message },
 { status: 500 }
)
 }
}

APPENDIX B
“SOURCE CODE – FRONTEND FUNCTIONS”

// app/page.tsx
import Hero from '../components/Hero'
import Chat from '../components/Chat'

export default function Page() {
 return (
 <main className="min-h-screen">
 <div className="container mx-auto px-4">
 <Hero />
 <Chat />
 </div>
 <footer className="mt-16 border-t border-base-300">
 <div className="container mx-auto px-4 py-6 text-sm text-base-400">
 © {new Date().getFullYear()} chat-pti
 </div>
 </footer>
 </main>
)
}

// components/Chat.tsx
'use client'

import { useEffect, useMemo, useRef, useState } from 'react'
import MessageBubble from './MessageBubble'

type ChatMessage = {
 id: string
 role: 'user' | 'assistant' | 'system'
 content: string
}

export default function Chat() {
 const [messages, setMessages] = useState<ChatMessage[]>([
 {
 id: 'welcome',
 role: 'assistant',
 content: 'Hi! Ask me anything PTI-related. I’ll route your message and get back fast.',
 },
])
 const [input, setInput] = useState('')
 const [loading, setLoading] = useState(false)
 const boxRef = useRef<HTMLDivElement>(null)

 const sessionId = useMemo(() => {
 if (typeof window === 'undefined') return 'server'
 const key = 'chatpti-session'
 let sid = localStorage.getItem(key)
 if (!sid) {
 sid = crypto.randomUUID()
 localStorage.setItem(key, sid)
 }
 return sid
 }, [])

 useEffect(() => {
 boxRef.current?.scrollTo({ top: boxRef.current.scrollHeight, behavior: 'smooth' })
 }, [messages])

 async function onSubmit(e: React.FormEvent) {
 e.preventDefault()
 const content = input.trim()
 if (!content || loading) return

 const userMsg: ChatMessage = { id: crypto.randomUUID(), role: 'user', content }
 setMessages((m) => [...m, userMsg])
 setInput('')
 setLoading(true)

 try {
 const res = await fetch('/api/chat', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({
 sessionId,
 messages: [...messages, userMsg].map(({ role, content }) => ({ role, content })),
 }),
 });

 if (!res.ok) {
 throw new Error(`Request failed: ${res.status}`)
 }

 const data = await res.json()
 const replyText = typeof data?.response === 'string'
 ? data.response
 : (data?.data?.response ?? 'Sorry, I couldn’t parse the response.')

 const aiMsg: ChatMessage = { id: crypto.randomUUID(), role: 'assistant', content: replyText }
 setMessages((m) => [...m, aiMsg])
 } catch {
 const aiMsg: ChatMessage = {
 id: crypto.randomUUID(),
 role: 'assistant',
 content: 'There was a problem reaching the server. Please try again.',
 }
 setMessages((m) => [...m, aiMsg])
 } finally {
 setLoading(false)
 }
 }

 return (
 <section id="chat" className="mt-6">
 <div className="grid lg:grid-cols-2 gap-8 items-start">
 {/* Left Column: Intro Text + Image */}
<div className="relative w-full h-full">
 <div className="card bg-base-200 shadow-xl overflow-hidden h-full">
 {/* Background Image */}
 <div
 className="absolute inset-0 bg-cover bg-center"
 style={{ backgroundImage: "url('/chat.png')" }}
 >
 {/* Dark Overlay */}
 <div className="absolute inset-0 bg-black/80 bg-opacity-60"></div>
 </div>

 {/* Text Content */}
 <div className="relative z-10 p-6 text-base-content text-white">
 <h2 className="text-3xl font-semibold">Chat-PTI Features</h2>
 <p className="mt-2 font-semibold">
 This application is a dynamic, AI chat-based interface that connects The Petroleum Training Institute community to a powerful custom AI database. Designed for flexibility and scalability, it enables seamless communication and quick information gathering.
 </p>
 <ul className="list-disc pl-6 mt-4 space-y-1 font-semibold">
 Real time AI powered response
 Educational and Productivity assistant
 Chat-driven triggers for business logic

 </div>
 </div>
</div>

 {/* Right Column: Chat Card */}
 <div className="card bg-base-200 shadow-xl">
 <div className="card-body">
 <div
 ref={boxRef}
 className="h-80 overflow-y-auto space-y-4 pr-2"
 >
 {messages.map((m) => (
 <MessageBubble key={m.id} role={m.role} content={m.content} />
))}
 {loading && (
 <div className="flex items-center gap-2 text-sm opacity-70">

 Thinking…
 </div>
)}
 </div>

 <form onSubmit={onSubmit} className="mt-4">
 <div className="join w-full">
 <input
 className="input text-white input-bordered join-item w-full"
 type="text"
 placeholder="Type your message…"
 value={input}
 onChange={(e) => setInput(e.target.value)}
 disabled={loading}
 />
 <button
 className="btn btn-primary join-item"
 type="submit"
 disabled={loading}
 aria-label="Send"
 >
 {loading ? (

) : (
 'Send'
)}
 </button>
 </div>
 </form>

 <div className="mt-2 text-xs opacity-70">
 Press Enter to send. Messages are proxied through the server.
 </div>
 </div>
 </div>
 </div>
 </section>
)
}

// components/Hero.tsx
export default function Hero() {
 return (
 <section
 className="hero min-h-[80vh] bg-cover bg-center bg-no-repeat relative"
 style={{
 backgroundImage: "url('/pti.png')", // Correct path for public folder
 }}
 >
 {/* Overlay for readability */}
 <div className="absolute inset-0 bg-opacity-60 z-0"></div>

 {/* Content on top of the image */}
 <div className="hero-content text-center z-10 relative text-white">
 <div className="max-w-2xl mx-auto">
 <h1 className="text-5xl font-extrabold font-['Poppins']">
 Discover PTI. Ask Anything.
 </h1>
 <div className="mt-4 text-lg text-white/80">
 Whether you're a student, lecturer, or visitor,{" "}

 <div className="badge badge-lg badge-primary mb-1">Chat-PTI</div>
 {" "}
 helps you explore everything about the Petroleum Training Institute — from admissions to hostel life, courses, fees, and beyond.
 </div>
 <div className="mt-8">

 Start chatting

 </div>
 </div>
 </div>
 </section>
)
}

// components/MessageBubble.tsx
type Props = {
 role: 'user' | 'assistant' | 'system';
 content: string;
}

export default function MessageBubble({ role, content }: Props) {
 const isUser = role === 'user'
 const align = isUser ? 'chat-end' : 'chat-start'
 const bubbleClass = isUser ? 'chat-bubble chat-bubble-primary' : 'chat-bubble'

 return (
 <div className={`chat ${align}`}>
 <div className="chat-image avatar">
 <div className="w-10 rounded-full bg-base-300 flex items-center justify-center">
 {isUser ? 'U' : 'AI'}
 </div>
 </div>
 <div className="chat-header text-xs opacity-70 mb-1">
 {isUser ? 'You' : 'Assistant'}
 </div>
 <div className={bubbleClass}>{content}</div>
 </div>
)
}
